Search
Call for Live Order Assistance & Technical Support (7:30am-5pm CST)
All Categories
    Menu Close
    RSS

    Blog

    (0) The Advantageous Upside to Pure Water

    What is Pure H2O?

    Crystal clean, pure, and without blemish.  If all water entered our appliances, equipment, and food in it's purest form we would have a lot less headaches.  Face it - hard water is tough - not just on equipment but on our bodies.  If we can introduce pure water into a plumbing system it will accomplish things from reducing friction all the way to keeping maintenance costs lower.  Fortunately, we can accomplish this through a process called reverse osmosis.

    Think about it this way - let's say you setup two equal plumbing systems but the only factor your change is the water hardness.  If you are pumping water that has 450 Parts Per Million (PPM) in System A, versus water that has 10 PPM in System B - which system will outlast the other?

    I hope you guessed System B.  Common sense tells us the less wear and tear we can put on mechanical pieces of machinery the longer it will last.  Therefore, if you have hard water (water that contains more abrasive or suspended particulates) you are going to undoubtedly add to variable expenses in the form of increased operating costs - the upkeep of your equipment will require more routine maintenance and repairs - no way around it.  Below you will see a cut-out view of a membrane used in reverse osmosis systems.


    Dow Reverse Osmosis Membrane Cutaway

     


    But what if I told you a simple investment, up front, could lower those variable costs and effectively keep more money in your pocket?  You keep more money in your pocket by allowing your system to run more efficiently and lessen the likelihood of additional maintenance and repairs costs.

    Bottom line - if you can keep your system operating longer and minimize down time, whether that's scheduled maintenance or emergency maintenance, more money stays in your pocket.

    Determining Water Hardness

    Let's get into the heart of this discussion and throw some numbers out there.  Water hardness is determined on parts per million.  The EPA allows for 500 PPM in drinking water.  Vehicle washing requires, a maximum, 50PPM.

    More and more greenhouses are beginning to monitor their water hardness, as well.  Greenhouses and farmers across the country need to monitor their pH levels constantly.  They do this to ensure that their plants are given the correct ratio of nutrients required to improve yields.  By rigorously monitoring the purification of the water supply, an operator can ensure that a clear, and controlled, chemical reaction takes place with their soil matter.

    The process of reverse osmosis allows operators and farm/greenhouse managers to effectively oversee this chemical reaction - in a much more efficient manner.

    Reverse Osmosis & How it Works

    Reverse Osmosis is a process in which microscopic particulates are captured by an extremely fine membrane that allows the solute, in this case, water to pass through.  This process is so effective that it can take water with 500PPM and reduce that number to less than 10PPM - and, in many instances we can do much better than that.

    This process is achieved through pressurization and, as noted above, extremely fine membranes or filters.  The solute is retained on the pressurized side of the membrane and the solvent is allowed to pass through the membrane.  The reason this process must occur under pressure is that the solution needs to be forced through the fine holes of the membrane.  In many systems there will be multiple stages of filtration.

    The first filtration step will occur through an extremely crude manner.  In many instances, the process will include a sand bed filtration that is gravity fed.  This step is no more complicated than allowing the solution to percolate through a large sand bed - thus extracting many of the large particles that would clog finer filters and membranes - which are downstream in the plumbing system.

    The next stage typically involves another filter, or series of filters, that catch particulates and suspended particles that were small enough to pass through the sand bed -which is stage 1 of the filtration process.  By implementing this second stage filter the process, in most instances, the solution is ready to actually pass through the finer filters/membranes - thus completing the reverse osmosis process.

    Prior to running the solution through the final filtration stages, it must be ran through a "booster pump" that creates the pressurized portion of the system.

    Once under pressure, the solution is ran through another membrane or series of membranes.  Depending on the water hardness, it might be necessary to use a series of reverse osmosis membranes to reach the desired PPM the operation requires.  Basic system components for a reverse osmosis system, used in the vehicle washing industry, can be viewed here.

    Upstart University Video Explanation

    Here is a video from Upstart University on how reverse osmosis can benefit farmers and greenhouse managers.



    For further product questions or inquiries about reverse osmosis systems and or replacement components and parts - don't hesitate to contact us or check out our website at Dultmeier.com - Thanks for stopping by and take care!

    (0) Horsepower Sizing for Various Pumping Applications

    Have you ever wondered how to quickly and accurately solve the problem of correctly sizing the horsepower for a pumping application?  In this post we offer a short lesson in yet another technical application that our Sales Team deals with on a daily basis.  We practice the principle of horsepower sizing almost every day at Dultmeier Sales.

    In order to correctly size the horsepower for an application one must perform the following equation(s) in order to calculate.  For positive displacement pumps we use the output pressure & flow rate required to determine the required horsepower.  Centrifugal pump horsepower sizing is calculated using different methodology.  We will elaborate on centrifugal pumps later in this post.

    For positive displacement pumps, such as plunger, piston, diaphragm, or roller pumps we want to take the pressure (psi) x flow rate (gpm) divided by the constant for the particular type of pump, (which is based on the general efficiency of the pump type).

    Determine the Type of Pump & Drive Option

    For Piston and Plunger pumps, the constant factor is 1460. Roller pumps we use 1030.  Lastly, Diaphragm pumps we use a factor of 1370.  These constant factors are used for pumping water solutions - if we get heavier or more viscous solutions than water - our factors will need to be altered.

    Centrifugal and Gear pumps can vary greatly and must be engineered to the specific application.  That being said, we can look at some examples further down the line in this post.

    We also need to consider the type of drive option that will be used.  For instance, when using an electric motor versus a gas or diesel engine, there are varying drive constant factors, as well.  More on this below in the post.

    Horsepower Sizing Examples Explained

    Example 1: Plunger pump rated flow is 4 gpm at 2000 psi. “EBH” or Electric Brake Horsepower required would be 4 x 2000 = 8000 divided by 1460 = 5.48.  This equation shows us that we would require an electric motor with at least 5.48 horse power output to allow the pump to operate at peak performance. In this instance you would most likely need to use a 7-1/2 HP electric motor as most motor brands are generally 1HP, 1.5HP, 2HP, 3HP, 5HP, 7.5HP, 10HP, 15HP, 20HP, 25HP, etc.

    It is important to note that electric motors have a rated horsepower and your specific application will have a required horsepower.  Required specifies the horsepower needed to produce the desired output flow and pressure.  While, rated horsepower defines the horsepower at which the motor is rated.  For instance, if the application requires a 13 HP motor, one would need to select a motor that is rated for 15 HP (there is not an electric motor rated for 13 HP or 14 HP).  Best practice is to select a motor that has a rated horsepower which exceeds your required application horsepower.

    Example 2: Diaphragm pump rated flow is 12 gpm at 500 psi. The EBH would be calculated as such: 12 x 500 = 6000 divided by 1370 = 4.38 This would require an electric motor with at least 4.38 horsepower output to allow this pump to operate at peak performance.

    Specialty Applications - Diesel Transfer Horse Power Sizing

    For calculating gas or diesel engine horsepower requirements, a general rule is to take EBH required x 2.0. Example 1 above would require 5.48 EBH x 2. 0 = 10.96 engine horsepower requirement. Therefore you would need a gas or diesel engine that will develop at least 10.96 horsepower to allow the pump to operate at peak performance.

    You can look at some diesel transfer units (centrifugal pump) that we have sized specifically for flow rates at the nozzle.  We have multiple offerings that are designed to produce flow rates through a plumbing system.  When calculating, we figure in the Total Dynamic Head of the plumbing system.  In the case of our Diesel Transfer Skids, that means the pressure loss through the hose reel, 32ft of hose (inside diameter varies based upon specific unit) and a discharge nozzle.  We use a self-priming centrifugal pump in these skid systems.  When dealing with self-primer centrifugal pumps a safe efficiency factor to use is 50% efficiency.

    When using gas or diesel engines to power pumps, depending on specific brands, “engine” horsepower requirements could be reduced slightly in some instances.  For instance, some engines may have a higher compression or provide more torque as a result of enhance production practices.  This is generally a smaller factor but something to consider when powering a pump with an engine.

    Centrifugal Pump Horsepower Sizing

    A major difference in sizing centrifugal pumps lies in the size, or trim, of the impeller.  Based upon the solution, desired flow rates, and TDH in the plumbing system - we will size a pump to have a certain impeller trim and this directly correlates to the required horse power.

    Generally speaking, we use pump curves to assist in sizing a centrifugal pump for a specific application.  A pump will ALWAYS operate on it's curve.  That's why it is vital to accurately determine our desired output flow rate, TDH, and solution being transferred.  All of these factors, and actually many more like temperature and viscosity can, and will, affect the required horse power and impeller size of a centrifugal pump.

    We have multiple tools at our disposal to assist with this process.  One of them comes from a supplier of ours, Wilo.  Dultmeier Sales' expertise paired with the expertise of Wilo helps us to provide a value-added service for our customers in pump/motor sizing for many applications.

    Standard Efficient vs. Premium Efficient Electric Motors

    Another important note to make is the difference between a standard efficient motor and a premium efficient motor.  With the passing of Department of Energy regulations in January 2020 - many pumps (specifically straight centrifugal pumps) are now held to a certain degree of efficiency standards.  The main goal being power consumption.  Premium efficient motors are designed to be just that...much more efficient than a standard efficient motor.

    Many pump manufacturers have since, or are in the process of switching, to premium efficient motors to assist in ensuring their pump products meet the mandated efficiency standards.  Some manufacturers were able to re-engineer their pumps to meet the regulations - while others needed to redesign the pumps and upgrade to premium efficient motors.

    Be aware, in some larger NEMA frame motors, the premium efficient option can boast a larger footprint.  If your motor footprints do not match, this could cause an issue when you go to install the replacement motor.  This is an important thing to consider when replacing standard efficient motors.

    Service Factor in Electric Motors

    Lastly, we want to consider the service factor in an electric motor of choice.  A common service factor that many motor manufacturers use is 1.15.  This means if your horsepower is rated to 20 HP then you actually have some leeway to go slightly beyond the rating - if necessary.  20 HP x 1.15 Service Factor = 23 HP.  If our application had a required horsepower of 22.25 HP we could select this example motor with a service factor of 1.15.

    While it's certainly not advised to select the example 20 HP motor in this instance - it could work.  We would always caution on the side of error and advise the end user to select a rated 25 HP motor.

    We certainly hope that this post provided useful content.  As always, should you have any questions about pump sizing - don't hesitate to call us at 888-677-5054.  Be good out there.

    (0) Disinfecting Foamer Excites Poultry Industry
    Leading Poultry Producers have recently approved the patent pending design of the JBI Poultry Disinfectant Foaming Trailer. JBI Services partnered with Dultmeier Sales in early 2017 to transform this idea and design into reality.